ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

ОФС.0.0.0000

Взамен ОФС.1.2.1.0015

МЕТОД КАПИЛЛЯРНОЙ ВИСКОЗИМЕТРИИ

1. ПРИНЦИП

Определение вязкости проводят, используя капиллярный вискозиметр с висячим уровнем (типа Уббелоде) подходящего размера при температуре от 19,9 °C до 20,1 °C, если не указано иное. Измеряют время, необходимое для того, чтобы уровень жидкости опустился от одной отметки вискозиметра до другой.

2. ОБОРУДОВАНИЕ

Составные части капиллярного вискозиметра типа Уббелоде представлены на рисунке 1.

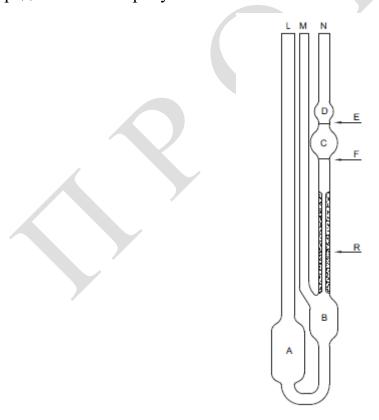


Рисунок 1 – Капиллярный вискозиметр с висячим уровнем (типа Уббелоде)

3. ПРОЦЕДУРА

Выбирают капиллярный вискозиметр подходящего размера для получения минимального времени движения уровня жидкости 200 с.

3.1. КАЛИБРОВКА

Капиллярные вискозиметры калибруют через установленные промежутки времени в зависимости от частоты использования оборудования и области применения.

Прибор калибруют при температуре, используемой для измерения, применяя не менее двух сертифицированных стандартных материалов, соответствующих диапазону измерения вязкости вискозиметром.

Рассчитывают постоянную вискозиметра (k) в квадратных миллиметрах на секунду в квадрате $(\text{мм}^2/\text{c}^2)$ по следующей формуле:

$$k = \frac{\eta}{\rho t} \tag{1}$$

где: η — динамическая вязкость сертифицированного стандартного материала, в миллипаскаль-секундах (мПа·с);

 ρ — плотность сертифицированного стандартного материала, в миллиграммах на кубический миллиметр (мг/мм³);

t – время движения от верхней до нижней отметки сертифицированного стандартного материала, в секундах (с).

Рассчитывают среднее для полученных значений.

3.2. МЕТОДИКА

Испытуемую жидкость (предварительно доведённую до температуры $20\,^{\circ}$ С, если не указано иное) заливают в вискозиметр через трубку L в таком количестве, чтобы заполнить расширение A, но при этом уровень жидкости в расширении B должен остаться ниже выхода к вентиляционной трубке M. Вискозиметр в вертикальном положении погружают в водяную баню при температуре от $19.9\,^{\circ}$ С до $20.1\,^{\circ}$ С (если не указано иное) и удерживают его в этом положении не менее $30\,$ мин для установления температурного равновесия. Трубку M закрывают и повышают уровень жидкости

в трубке N таким образом, чтобы она находилась примерно на 8 мм выше метки E. Удерживают жидкость на этом уровне путём закрывания трубки N и открывания трубки M. Открывают трубку N и с помощью секундомера измеряют время, за которое уровень жидкости снизится от метки E до метки F, с точностью до 1/5 секунды.

Время движения жидкости, подвергаемой испытанию, представляет собой среднее значение трёх последовательных измерений. Результат считают достоверным, если относительное стандартное отклонение трёх измерений не превышает 2,0 %.

3.3. РАСЧЁТЫ

Кинематическую вязкость (ν) ($O\Phi C$ «Вязкость»), в квадратных миллиметрах на секунду (мм²/с), рассчитывают по формуле:

$$v = kt \tag{2}$$

где: k — постоянная вискозиметра, в квадратных миллиметрах на секунду в квадрате (мм²/с²);

t — время движения испытуемой жидкости, в секундах (с).

Динамическую вязкость (η) ($O\Phi C$ «Вязкость»), в миллипаскальсекундах (мПа·с), рассчитывают по формуле:

$$\eta = k\rho t \tag{3}$$

где: ρ — плотность испытуемой жидкости при температуре измерения вязкости, в миллиграммах на кубический миллиметр (мг/мм³).

Значение плотности может быть получено путём умножения относительной плотности жидкости, подвергаемой испытанию, на 0,99820 (в случае измерения при температуре 20 °C) или на 0,99704 (в случае измерения при температуре 25 °C).